Series of semi-Markov processes to model infrastructure resilience under multihazards
نویسندگان
چکیده
منابع مشابه
Assessment of Resilience in Desalination Infrastructure Using Semi-Markov Models
As the supply of desalinated water becomes significant in many countries, the reliable long-term operation of desalination infrastructure becomes paramount. As it is not realistic to build desalination systems with components that never fail, instead the system should be designed with more resilience. To answer the question how resilient the system should be, we present in this paper a quantita...
متن کاملSemi-markov Decision Processes
Considered are infinite horizon semi-Markov decision processes (SMDPs) with finite state and action spaces. Total expected discounted reward and long-run average expected reward optimality criteria are reviewed. Solution methodology for each criterion is given, constraints and variance sensitivity are also discussed.
متن کاملQuantum semi-Markov processes.
We construct a large class of non-Markovian master equations that describe the dynamics of open quantum systems featuring strong memory effects, which relies on a quantum generalization of the concept of classical semi-Markov processes. General conditions for the complete positivity of the corresponding quantum dynamical maps are formulated. The resulting non-Markovian quantum processes allow t...
متن کاملSemi-Markov Decision Processes
The previous chapter dealt with the discrete-time Markov decision model. In this model, decisions can be made only at fixed epochs t = 0, 1, . . . . However, in many stochastic control problems the times between the decision epochs are not constant but random. A possible tool for analysing such problems is the semiMarkov decision model. In Section 7.1 we discuss the basic elements of this model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reliability Engineering & System Safety
سال: 2020
ISSN: 0951-8320
DOI: 10.1016/j.ress.2019.106659